>
"The layout of Charlie Kirk's event doesn't make sense" This was a planned assass
"Are Banks a Threat to Your Freedom? | Guest: Phillip Patrick"
Benjamin Netanyahu Reacts to Charlie Kirk's Death: "We Lost an Incredible Human"
Charlie Kirk refused Netanyahu funding offer, was 'frightened' by pro-Israel forces before d
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
An insect-inspired flying robot with wings that buzz thanks to a new type of electric 'muscle' has been developed by British scientists.
The prototype weighs about 0.01lbs (5g), has a wing span of 5.9 inches (15cm) and can fly at 1.6mph.
It is hoped that one day the robot will be able to look for survivors in disaster zones such as collapsed buildings, monitor hard-to-reach infrastructure and pollinate crops.
Researchers at Bristol University said its wings are so efficient that they actually provide more power than an insect muscle of the same weight.
'It's very challenging to beat nature,' Dr Tim Helps, lead author of the study, told MailOnline.
'If we can produce more power than insect muscle, it means that we can potentially have better performance than an insect — which is really exciting.'
He added: 'It's very challenging because nature does such an amazing job.'
Until now, typical micro flying robots have used motors, gears and other complex transmission systems to achieve the up-and-down motion of the wings.
However, researchers involved in the study said this had added complexity, weight and undesired dynamic effects.
Instead, after taking inspiration from bees and other flying insects, they created an artificial muscle system called the liquid-amplified zipping actuator (Laza), which achieves wing motion using no rotating parts or gears.
The wing itself acts like a negatively charged electrode, while above and below it are two positively charged electrodes.