>
Common eye drops may provide hope for nearsighted kids
Instagram Reinstates Robert F. Kennedy Jr., Claims Ban on Campaign Account Was a Mistake
Want a Revolution? Start a Business.
Snowden and the Fight for American Privacy
Newly Developed Humanoid Robot Warns About AI Creating "Oppressive Society"
Scientists develop mega-thin solar cells that could be shockingly easy to produce:
High-tech pen paints healing gel right into wounds
EG4 18K after 1 Megawatt Hour! Is it worth the $$$?
Terminator-style Synthetic Covering for Robots Mimics Human Skin and Heals Itself
The Death of 2FA (2 Factor Authentication)? + Q&A
High-speed orbital data link drags space communications out of the '60s
WORLD'S FIRST 3D PRINTED CLAY HOUSES
Smaller, cheaper, safer: The next generation of nuclear power, explained
As lithium batteries cycle, they accumulate little islands of inactive lithium that are cut off from the electrodes, decreasing the battery's capacity to store charge. But the research team discovered that they could make this "dead" lithium creep like a worm toward one of the electrodes until it reconnects, partially reversing the unwanted process.
Adding this extra step slowed the degradation of their test battery and increased its lifetime by nearly 30%.
"We are now exploring the potential recovery of lost capacity in lithium-ion batteries using an extremely fast discharging step," said Stanford postdoctoral fellow Fang Liu, the lead author of a study published Dec. 22 in Nature.