>
Turning All U.S. Roads into Toll Roads: "Tax by Mile" is Here
RFK's Deputy: Saviour or Wolf in Sheep's Clothing?
One of America's biggest companies is imploding
Zombie Voyager 1 Spacecraft Resurrects Its "Dead" Thrusters Over 15 Billion Miles Away
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Nextbigfuture notes that the design looks very simple and achievable. If it works then by 2030s we would be able to mass produce probes by the thousands to explore the solar system and sending out telescopes to the gravitational lens point would give direct high-resolution imaging of exoplanets in thousands of solar systems.
The Plasma Magnet [PM] required relatively little energy and yet was capable of propelling a much larger mass at a velocity exceeding any current propulsion system, including advanced solar sails.
The Plasma Magnet was proposed by Slough. It arranges coils to use solar wind ions to induce a very large magnetosphere that is propelled by the solar wind. Unlike earlier proposals for magnetic sails that required a large electric coil kilometers in diameter to create the magnetic field, the induction of the solar wind ions to create the field meant that the structure was both low mass and that the size of the resulting magnetic field increased as the surrounding particle density declined. This allowed for a constant acceleration as the PM was propelled away from the sun, very different from solar sails and even magsails with fixed collecting areas.