>
Exclusive - Rep. Anna Paulina Luna Proposes to 'Strip' Deep State Surveillance Tools...
Real ID Is Not About Keeping You Safe
BREAKING: O'Keefe Media Group Releases Explosive Undercover Video...
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
This concept is similar to a standard balloon, whereas a balloon uses helium or hydrogen to displace air and provide lift, a vacuum airship uses a rigid structure to maintain a vacuum to displace air and provide lift.
A vacuum airship made of a homogenous material cannot withstand the atmospheric pressure on Earth for any material humans have yet discovered, which can be proven using the critical buckling load of a sphere. However, from an initial analysis of the vacuum airship structure and relationship to atmospheric conditions, Mars appears to have an atmosphere in which the operation of a vacuum airship would not only be possible, but beneficial over a conventional balloon or dirigible. In addition, a multi-layer approach, in conjunction with a lattice, would circumvent the buckling problems of a single homogenous shell. The lattice used to support the two layers of the vacuum airship shell can be made, using modulation of the lengths of the members, to fit the curvature of the vacuum airship precisely by following an atlas approach to the modulation.