>
One company does over 50% of all school photos in America and over 25% of school photos globally
Your Water Filter Will Clog - The Medieval Sand Filtration System That Purifies Forever
Aaron Day - BTC and Stable Coins: 'The Creature From Epstein Island' (Publisher Recommended)
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

Researchers in Japan have shed yet more light on the topic, discovering a new mechanism by which dividing cells can drive hair follicles to exhaustion, subduing their regenerative abilities as we age.
The research was carried out by scientists at Tokyo Medical and Dental University and the University of Tokyo, who set out to explore the way hair follicle stem cells help us grow new hair, and the reasons why that important relationship can break down.
The sustainability of our hair follicle stem cells is reliant on a healthy combination of two types of cell division. In cyclic symmetric cell division, the hair follicle stem cells are split into two cell types with the same fate, while in asymmetric cell division, they are split into a differentiating cell along with a separate, self-renewing stem cell. These two cycles work in concert to keep the population of hair follicle stem cells alive and able to regenerate hair. By the same token, they can lead to their death when they don't work as they should.