>
Conservatives Are Being Targeted – Louder with Crowder CEO Warns / Redacted
"Liz Reitzig: Raw Milk Revolution"
Court Clears Trump to Defund Planned Parenthood
PepsiCo, Mars, ADM team up for regenerative agriculture project in Poland
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
STUDY HARD ENOUGH, kids, and maybe one day you'll grow up to be a professional robot fighter. A few years ago, Boston Dynamics set the standard for the field by having people wielding hockey sticks try to keep Spot the quadrupedal robot from opening a door. Previously, in 2015, the far-out federal research agency Darpa hosted a challenge in which it forced clumsy humanoid robots to embarrass themselves on an obstacle course way outside the machines' league. (I once asked you, dear readers, to stop laughing at them, but have since changed my mind.) And now, behold: The makers of the Jueying robot dog have taught it a fascinating way to fend off a human antagonizer who kicks it over or pushes it with a stick.
A team of researchers from China's Zhejiang University—where the Jueying's hardware was also developed—and the University of Edinburgh didn't teach the Jueying how to recover after an assault, so much as they let the robot figure it out. It's a dramatic departure from how a hardware developer like Boston Dynamics goes about teaching a robot how to move, using decades of human experience to hard code, line by line, the way a robot is supposed to react to stimuli like, um, a person's foot.
But there's got to be a better way. Imagine, if you will, a soccer team. Midfielders, strikers, and a goalkeeper all do generally soccer-esque things like running and kicking, but each position has its own specialized skills that make it unique. The goalkeeper, for instance, is the only person on the field who can grab the ball with their hands without getting yelled at.
In traditional methods of training robots, you'd have to meticulously code all of those specialized behaviors. For instance, how should the actuators—motors that move a robot's limbs—coordinate to make the machine run like a midfielder? "The reality is that if you want to send a robot into the wild to do a wide range of different tasks and missions, you need different skills, right?" says University of Edinburgh roboticist Zhibin Li, corresponding author on a recent paper in the journal Science Robotics describing the system.