>
Israel Urges the US To Start Bombing Yemen Again
UPDATE: Loomer scoop: Patel and Bongino furious with Pam Bondi…
Why the Military-Industrial Complex Always Wins
BREAKING: Trump Responds To The Jeffrey Epstein Whitewash Firestorm Threatening To Trigger...
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
The breakthrough is hoped to allow researchers new ways to investigate baby brain activity in natural environments without the need for expensive MRI machines.
"There is a lot we still don't know about how the brain develops, and a big part of the problem is that studying the infant brain is really difficult with traditional scanners," explains Rob Cooper lead on the project from University College London. "As any parent knows, 6-month old babies are very active; they move around all the time and are easily distracted. Using a technique like MRI, the subject has to remain completely still, which is almost impossible with babies unless they are asleep or sedated."
The system presented in the study, published in the journal NeuroImage, is a new generation of wearable caps using high-density diffuse optical tomography technology (HD-DOT). The system is called LUMO, and the prototype tested came from Gowerlabs, a UCL spinoff company.
Each hexagonal tile on the cap contains three LED sources and four sensors. Near-infrared light is used to detect changes in brain oxygenation. Through these changes researchers can effectively map which parts of the brain are actively working in real-time.
The closest imaging method to this new HD-DOT technology currently available to neuroscientists is called functional near-infrared spectroscopy (fNIRS). But fNIRS devices offer limited spatial resolution and can still require bulky headsets. Comparing the new HD-DOT devices to fNIRS measurements, the researchers say this new imaging technology is a dramatic improvement.