>
How a 27-Year-Old Codebreaker Busted the Myth of Bitcoin's Anonymity
Old World Order is COLLAPSING: The Death of Europe and the Rise of China
Energy Secretary Expects Fusion to Power the World in 8-15 Years
South Koreans Feel Betrayed Over Immigration Raid, Now Comes the Blowback
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
(Natural News) While much has been written about nanomaterials and the benefits they will give humans, not as much thought has been given to how they can benefit plants. A recent study looks to change that, exploring how nanomaterials may be able to give plants "super" abilities.
The researchers, who presented their study at the American Chemical Society's Spring 2019 National Meeting & Exposition, compare it to how humans have been introducing foreign materials to plants for thousands of years.
"One example of this is flower dyeing," says lead researchers Dr. Joseph Richardson. "You'd immerse a cut flower stem into some dye, and the dye would be taken up through the stem and penetrate into the flower petals, and then you'd see these beautiful colors."
Using nanomaterials takes this into a more high-tech direction, with benefits that are more than just aesthetic.
Putting nanomaterials inside plants
Plants are readily able to absorb water and molecules dissolved in fluids thanks to their extensive vascular networks. That said, it's much harder for larger materials and nanoparticles, such as metal-organic frameworks (MOF), to penetrate a plant's roots.
With this in mind, Richardson and his colleagues at the University of Melbourne wondered if they could feed MOF precursors to the plants, which the latter would then convert into finished nanomaterials.