>
EXCLUSIVE: "The HUGE Elephant In The Room Is Actually What Jeffrey Epstein Was Best At..."
EXCLUSIVE INTERVIEW: Republican Candidate For Texas Governor "Doc" Pete Chambers Joins...
Epstein Files Trigger Political Fallout Across Europe
Conjoined twin 'influencers' who have gained more than 280,000 followers with their intimate
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

(Natural News) While much has been written about nanomaterials and the benefits they will give humans, not as much thought has been given to how they can benefit plants. A recent study looks to change that, exploring how nanomaterials may be able to give plants "super" abilities.
The researchers, who presented their study at the American Chemical Society's Spring 2019 National Meeting & Exposition, compare it to how humans have been introducing foreign materials to plants for thousands of years.
"One example of this is flower dyeing," says lead researchers Dr. Joseph Richardson. "You'd immerse a cut flower stem into some dye, and the dye would be taken up through the stem and penetrate into the flower petals, and then you'd see these beautiful colors."
Using nanomaterials takes this into a more high-tech direction, with benefits that are more than just aesthetic.
Putting nanomaterials inside plants
Plants are readily able to absorb water and molecules dissolved in fluids thanks to their extensive vascular networks. That said, it's much harder for larger materials and nanoparticles, such as metal-organic frameworks (MOF), to penetrate a plant's roots.
With this in mind, Richardson and his colleagues at the University of Melbourne wondered if they could feed MOF precursors to the plants, which the latter would then convert into finished nanomaterials.