>
How a 27-Year-Old Codebreaker Busted the Myth of Bitcoin's Anonymity
Old World Order is COLLAPSING: The Death of Europe and the Rise of China
Energy Secretary Expects Fusion to Power the World in 8-15 Years
South Koreans Feel Betrayed Over Immigration Raid, Now Comes the Blowback
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Two Harvard scientists have succeeded in creating an entirely new substance long believed to be the "holy grail" of physics — metallic hydrogen, a material of unparalleled power that could one day propel humans into deep space. The research was published in January 2017 in the journal Science.
Scientists created the metallic hydrogen by pressurizing a hydrogen sample to more pounds per square inch than exists at the center of the Earth. This broke the molecule down from its solid state and allowed the particles to dissociate into atomic hydrogen.
The best rocket fuel we currently have is liquid hydrogen and liquid oxygen, burned for propellant. The efficacy of such substances is characterized by "specific impulse," the measure of impulse fuel can give a rocket to propel it forward.
"People at NASA or the Air Force have told me that if they could get an increase from 450 seconds [of specific impulse] to 500 seconds, that would have a huge impact on rocketry," Isaac Silvera, the Thomas D. Cabot Professor of the Natural Sciences at Harvard University, told Inverse by phone. "If you can trigger metallic hydrogen to recover to the molecular phase, [the energy release] calculated for that is 1700 seconds."