>
Closing in on How Charlie Kirk Was Assassinated
Here's a little song I just wrote. Dedicated to Al Gore.
Judge Blocks Executive Order Tightening Voter-registration Requirements
ALEX JONES' EXCLUSIVE EPSTEIN DOJ MEGA DOCUMENT DUMP ANALYSIS:
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries
Lab–grown LIFE takes a major step forward – as scientists use AI to create a virus never seen be
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Donut Lab Says It Cracked Solid-State Batteries. Experts Have Questions.

They plan to repeat the experiment with an energy of 3 petawatts (3000 trillion Watts – 13 joules over 5 femtoseconds).
ALLS/LSF (Advanced Laser Light Source/ Laboratoire de Sources Femtosecondes) is a unique infrastructure of international caliber located at the Varennes campus of INRS-EMT (20 minutes south-east of Montreal).
Many research groups are amplifying the energy of the laser to increase its power, but this approach is expensive and requires beams and optics that are very large, more than a meter in size.
A team from Canada, Russia and France have chosen another direction to achieve an intensity of around 100 billion trillion Watts per square centimeter. Lasers that intense will be able to break the vacuum and generate particles. Rather than increasing the energy of the laser, they decrease the pulse duration to only a few femtoseconds. This would keep the system within a reasonable size and keep operating costs down.
By extending the concept of thin-film compression to a thin plate, nonlinear post-compression from 24 fs to 13 fs of sub-petawatt laser pulses is demonstrated experimentally using a 1 mm-thick silica plate and chirped mirrors with a total anomalous dispersion of −50 fs2. The measurements were implemented with a specially designed dispersionless vacuum frequency-resolved optical gating, which is based on second harmonic generation of tested pulses in a 10 μm β-barium borate crystal glued on a 1 mm fused silica substrate. The used compression scheme is implemented in a geometry compatible with high power on-target experiment realization.