>
Pentagon to become largest shareholder in rare earth miner MP Materials; shares surge 50%
War on Technocracy UNLEASHED: Wake Up, Evolve, Build - The BIG Shift Revealed!
The Insidious Implications of the New Epstein Claims
Tokenisation of government bonds: assessment and roadmap
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Now scientists have successfully bridged the gap between organic and artificial, with biohybrid synapses that let living cells communicate with electronic systems, not with electrical signals but with neurotransmitters like dopamine.
In the brain, neurons pass signals back and forth across gaps called synapses. This connection gets stronger every time it's called upon, which is the basis for how we learn. The fact that information is processed and stored in the same part of the brain drastically speeds up recall.
That gives the organic brain a huge advantage over traditional computers, which process and store information in separate places. It makes sense then that emerging computer systems are beginning to mimic the structure of the brain, using artificial neurons and synapses.