>
Widow of killed fire chief not satisfied with Secret Service suspensions...
Gunman leaves multiple injured at church after shooting cop at Kentucky's Blue Grass Airport
One year later: White House highlight Trump's legacy on anniversary of assassination attempt
Arizona homeowner fined by petty HOA for act of kindness during extreme heat
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Quantum entanglement describes the bizarre state where two particles can become linked so tightly that they seem to communicate instantly, no matter how far apart they are. Measuring the state of one particle will instantly change the state of the other, hypothetically even if it's on the other side of the universe. That implies that the information is moving faster than the speed of light, which is thought to be impossible – and yet, it's clearly and measurably happening. The phenomenon even unnerved Einstein himself, who famously described it as "spooky action at a distance."
While we still don't entirely understand why or how it works, that's not stopping scientists figuring out ways to use it to our advantage. Strides are being made towards creating quantum computers and a quantum internet, both of which would be super fast and nigh-unhackable. And now, in a new study by physicists at the Institute of Science and Technology Austria (IST Austria), MIT and the University of York, the phenomenon been applied to radar.