>
Trump defends AG Pam Bondi amid Epstein file backlash: 'Let her do her job'
Metal fuses in space - with no heat or pressure
In case you missed it...AIRLINE GIANT EMIRATES TO ACCEPT BITCOIN AND CRYPTO FOR FLIGHTS
Pentagon to become largest shareholder in rare earth miner MP Materials; shares surge 50%
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
We've actually been hearing a lot about "bioscaffolds" lately.
In a nutshell, they're three-dimensional pieces of biocompatible material that are implanted within the body, and that have a microstructure similar to that of the surrounding tissue. Over time, cells from that tissue migrate into the scaffold, colonizing it and reproducing. Eventually, they entirely replace the material, forming pure muscle, bone, cartilage or other tissue.
That said, pre-producing such bioscaffolds and then implanting them in muscle is quite challenging. With that in mind, scientists at the University of Connecticut developed a prototype handheld 3D printer to do the job.
It starts by depositing a gelatin-based hydrogel directly into the unwanted gap within the muscle. An integrated ultraviolet light causes that gel to cure into a bioscaffold made up of tiny muscle-like fibers, which readily adheres to the adjacent muscle tissue – no sutures are required. Muscle cells then move into the scaffolding.
In lab tests, the device proved to be effective at treating volumetric muscle loss injuries in mice.