>
Back to cash: life without money in your pocket is not the utopia Sweden hoped
How people spent their time from 1930 - 2024
Superwood is Here! This Amazing New Material Could Change The World!
If only we'd built those offshore wind turbines, eaten more cricket-burgers...
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
The approach was demonstrated in mice by the scientists in Ann Arbor, when the nanoparticles enhanced healing by reprogramming the aggressive immune cells.
"In this work, we demonstrate that instead of overcoming an immune response, we can co-opt the immune response to work for us to promote the therapeutic response," said Lonnie Shea, the Steven A. Goldstein Collegiate Professor of Biomedical Engineering.
Trauma of any kind kicks the body's immune response into gear. In a normal injury, immune cells infiltrate the damaged area and clear debris to initiate the regenerative process.
The central nervous system, which includes the brain and spinal cord, however, is normally walled off from the immune activity by the blood-brain barrier. But a spinal cord injury breaks that barrier, letting in overzealous immune cells that create too much inflammation for the delicate neural tissues. This leads to the rapid death of neurons, damage to the insulating sheaths around nerve fibers that allow them to send signals, and the formation of a scar that blocks the regeneration of the spinal cord's nerve cells.