>
The Middle Class Is Collapsing: Nearly 1 Out Of Every 4 Americans Is Now "Functionally Unemploy
My Hot Take On Trump Diverting $3 Billion From Harvard To Trade Schools
When Things Go to Heck, Have a Hand Truck
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
Space capabilities from SpaceX Super Heavy Starship and being able to build in space will enable 1000 to 1 million times larger projects on the moon and in cis-lunar orbits.
OWL-Moon
OWL-MOON: Very high resolution spectro-polarimetric interferometry and imaging
from the Moon: exoplanets to cosmology
A 100-meter space telescope on the moon will let us directly observe the height of mountains on exoplanets.
A giant moon telescope will let us answer three major questions in astronomy.
1) the detection of biosignatures on habitable exoplanets,
2) the geophysics of exoplanets and
3) cosmology.
Detecting Alien Life in Other Solar Systems
One of our main science objectives is the characterization of exoplanets and biosignatures. There are about ten potentially habitable planet candidates up to 10 pc. But there is no guarantee that even a single one will present biosignatures. We must enlarge the sample and go up to say 40 pc. An Earth-sized planet at 1 AU from a G star has a planet/star brightness ratio of 3.10^−9 for an albedo of 0.3. Thus, for a 8th magnitude star, it means a 32nd magnitude target. For 1 nm spectral resolution spectroscopy needed to detect atomic and molecular emission lines, consider the goal of 1000 photons detected in 3 hours. This needs a 50-meter telescope. To detect 500 photons in the bottom of absorption lines having a depth 10 times the continuum in 3 hours, one would need a 100-meter telescope.