>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

From the time we're conceived as just a single cell, to our wounds healing themselves in adulthood, cell division is a key part of how living organisms grow and survive. While we understand how this works on the broad scale, the nuances are still somewhat lost on us.
So the researchers on the new study set out to investigate the process further. To do so, they removed the "ingredients" from a cell and reconstructed them outside. But what they didn't expect was that this makeshift cell would undergo division like a normal cell.
First the team separated out actin, a protein that's key to the cellular division process. The actin proteins, which are long and rod-shaped, tended to clump together in parallel lines, forming a kind of almond-shaped droplet.
The real magic happened when the researchers added myosin, a motor protein that plays a part in muscle contraction. Surprisingly, the myosin moved towards the center of the actin droplets, then pinched them off from the middle, forming two separate "cells."