>
How $21 TRILLION Went Missing From U.S. Tax Payers! -Catherine Austin Fitts FULL INTERVIEW
Barnum World Film Premiere - Phoenix
Zelensky Confirms He Will Meet Putin For Peace Talk
Watch: President Trump Blasts Media For Refusing to Report on 'Genocide' of White Farmers...
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
As a social media platform with global reach, Facebook leans extensively on its artificial intelligence and machine-learning systems to keep the site online and harmful content off it (at least, some of the time). Following its announcement at the start of the month regarding self-supervised learning, computer vision, and natural language processing, Facebook on Monday shared details about three additional areas of research that could eventually lead to more capable and curious AI.
"Much of our work in robotics is focused on self-supervised learning, in which systems learn directly from raw data so they can adapt to new tasks and new circumstances," a team of researchers from FAIR (Facebook AI Research) wrote in a blog post. "In robotics, we're advancing techniques such as model-based reinforcement learning (RL) to enable robots to teach themselves through trial and error using direct input from sensors."
Specifically, the team has been trying to get a six-legged robot to teach itself to walk without any outside assistance. "Generally speaking, locomotion is a very difficult task in robotics and this is what it makes it very exciting from our perspective," Roberto Calandra, a FAIR researcher, told Engadget. "We have been able to design algorithms for AI and actually test them on a really challenging problem that we otherwise don't know how to solve."