>
Palantir kills people? But Who's Really Pushing the Buttons?
'Big Short' investor Michael Burry sounds alarm on AI bubble that's 'too big to save
2026-01-21 -- Ernest Hancock interviews Professor James Corbett (Corbett Report) MP3&4
Joe rogan reacts to the Godfather of Ai Geoffrey Hinton talk of his creation
The day of the tactical laser weapon arrives
'ELITE': The Palantir App ICE Uses to Find Neighborhoods to Raid
Solar Just Took a Huge Leap Forward!- CallSun 215 Anti Shade Panel
XAI Grok 4.20 and OpenAI GPT 5.2 Are Solving Significant Previously Unsolved Math Proofs
Watch: World's fastest drone hits 408 mph to reclaim speed record
Ukrainian robot soldier holds off Russian forces by itself in six-week battle
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury

This latest scientific breakthrough from China could bring cheap, clean drinking water to people around the world.
Earlier this month, scientists from Yangzhou University developed a water system that used sunlight and 2D materials to purify water of 99.9999% of bacteria – including E. coli.
According to their tests, their eco-friendly system was able to purify enough daily drinking water for four people in just under 30 minutes.
The inexpensive system works by using sheets of graphitic carbon nitride as a photocatalyst inside of a water container. When the sheets are exposed to direct sunlight, they release electrons that bond with the oxygen in the water and create compounds that purge the water of bacteria.
There are modern purification systems that use similar chemical processes for destroying bacteria, but they use photocatalysts that leave behind harmful chemical pollutants as a byproduct. These systems usually also take over an hour to purify the same 10-liter bag of water as the system from Yangzhou University.
The university researchers recently published their findings in the journal Chem.
"Its first-order disinfection rate was five times higher than that of previously reported best metal-free photocatalysts with only one tenth catalyst consumption," said the paper's co-author Wang Chengyin.
The researchers are now working to implement their system into portable drinking containers so they can start being deployed to at-risk areas around the world.
"The future application of photocatalytic disinfection technology can significantly relieve clean-water scarcity and global energy shortage," said Wang Da, the study's lead researcher.