>
The Pentagon Failed Its Audit Again. You Should Be Alarmed.
Cuban Crisis 2.0. What if 'Gerans' flew from Cuba?
Senate Democrats Offer Promising Ideas for Changing Immigration Enforcement
Never Seen Risk Like This Before in My Career
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries
Lab–grown LIFE takes a major step forward – as scientists use AI to create a virus never seen be
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Donut Lab Says It Cracked Solid-State Batteries. Experts Have Questions.

Princeton has developed an electromagnetic particle injector (EPI) which is a type of railgun that fires a high-velocity projectile from a pair of electrified rails into a plasma on the verge of disruption. The projectile, called a "sabot," releases a payload of material into the center of the plasma that radiates, or spreads out, the energy stored in the plasma, reducing its impact on the interior of the tokamak.
Current systems release pressurized gas or gas-propelled shattered pellets using a gas valve into the plasma, but with velocity limited by the mass of the gas particles.
The risk of disruptions is particularly great for ITER, the large international tokamak under construction in France to demonstrate the feasibility of fusion power. ITER's dense, high-power discharges of plasma, the state of matter that fuels fusion reactions, will make it difficult for current gas-propelled methods of mitigation to penetrate deeply enough into the highly energetic ITER plasma to take good effect.