>
Trump Administration Furthering Control Grid
Living in a World of Ongoing Shortages
The Gaza Crisis and the Repeal of Christianity's Personhood Revolution
RED ALERT: Doctors Sound the Alarm After Fibrous Clots Discovered in Young Children Born...
Hydrogen Gas Blend Will Reduce Power Plant's Emissions by 75% - as it Helps Power 6 States
The Rise & Fall of Dome Houses: Buckminster Fuller's Geodesic Domes & Dymaxion
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
In the US test facility (TF2) will enable the precooler test article (HTX) to be exposed to high-temperature airflow conditions in excess of 1,000°C (~1800°F) that are expected during high-speed flights up to Mach 5.
They are getting ready for 'hot' heat exchanger tests.
The UK TF1 test site is due to be completed and commissioned during 2019 and will enable us to test critical subsystems along with the testing of a SABRE engine core.
Pre-cooler technology
Reaction Engines pre-coolers are made from thousands of thin-walled tubes to provide high surface area to low weight. Each tube is joined to an inlet and outlet manifold, which allows coolant to be injected and removed for the cooling process. They have unique heat exchanger manufacturing experience to bond thousands of joints in a single operation and achieve zero leakage. The joints in their pre-cooler modules are hermetically sealed, meaning that the gas which escapes can be measured by the molecule.