>
The Vindication of Dr. Bhattacharya
Lessons from the 2025 European Power Grid Failure
Surprise, Surprise: Bibi Discovers "Secret Iranian Nuclear Weapons Facility" in Iran
Tetris founder's family village is collapse-proof, remote offgrid-topia
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
Fused double-walled carbon nanotube (DWNT) fibers were made with a strength of a 700 GPa Young's modulus. This strength was seen in prior experiments, in 2010 and 2011, where electron beams welded DWNTs in microscopic bundles together and the fused bundles had 700 GPa tensile strength. There is now an effort to scale up production of ultrahigh strength material using high temperatures (1700-2300 C) and about 800 atmospheres of pressure instead of an expensive and time-consuming process using high-voltage e-beams. The electron dose available from commercial e-beam facilitaties is so low that processing macroscopic DWNT materials would take months instead of half an hour or less. The same thermal treatment process will enable manufacturing wires that have the highest conductivity of all carbon nanotube wires.