>
Palantir kills people? But Who's Really Pushing the Buttons?
'Big Short' investor Michael Burry sounds alarm on AI bubble that's 'too big to save
2026-01-21 -- Ernest Hancock interviews Professor James Corbett (Corbett Report) MP3&4
Joe rogan reacts to the Godfather of Ai Geoffrey Hinton talk of his creation
The day of the tactical laser weapon arrives
'ELITE': The Palantir App ICE Uses to Find Neighborhoods to Raid
Solar Just Took a Huge Leap Forward!- CallSun 215 Anti Shade Panel
XAI Grok 4.20 and OpenAI GPT 5.2 Are Solving Significant Previously Unsolved Math Proofs
Watch: World's fastest drone hits 408 mph to reclaim speed record
Ukrainian robot soldier holds off Russian forces by itself in six-week battle
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury

The first exchange of a few photons per pulse has been performed between two different satellites 20,000 kilometers apart. This was between the Russian GLONASS constellation and the Space Geodesy Centre of the Italian Space Agency.
The longest channel length previously demonstrated was around 7,000 km, in an experiment using a Medium-Earth-Orbit (MEO) satellite that we reported in 2016.
Arxiv – Towards quantum communication from global navigation satellite system (8 pages).
Satellite-based quantum communication (QC) is an invaluable resource for the realization of a quantum network at the global scale. In this regard, the use of satellites well beyond the low Earth orbit gives the advantage of long communication time with a ground station. However, high-orbit satellites pose a great technological challenge due to the high diffraction losses of the optical channel, and the experimental investigation of such quantum channels is still lacking. Here, we report on the first experimental exchange of single photons from a global navigation satellite system (GNSS) at a slant distance of 20 000 km, by exploiting the retroreflector array mounted on GLONASS satellites.