>
The Pentagon Failed Its Audit Again. You Should Be Alarmed.
Cuban Crisis 2.0. What if 'Gerans' flew from Cuba?
Senate Democrats Offer Promising Ideas for Changing Immigration Enforcement
Never Seen Risk Like This Before in My Career
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries
Lab–grown LIFE takes a major step forward – as scientists use AI to create a virus never seen be
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Donut Lab Says It Cracked Solid-State Batteries. Experts Have Questions.

The main design objectives of the third generation EPR design are increased safety while providing enhanced economic competitiveness through improvements to previous PWR designs scaled up to an electrical power output of around 1650 MW (net) with thermal power 4500 MW. The reactor can use 5% enriched uranium oxide fuel, reprocessed uranium fuel or 100% mixed uranium plutonium oxide fuel. The EPR was designed to use uranium more efficiently than older Generation II reactors, using approximately 17% less uranium per unit of electricity generated than these older reactor technologies.
The first two EPR units to start construction, at Olkiluoto in Finland and Flamanville in France, are both facing costly delays (to at least 2020). Construction commenced on two Chinese units at Taishan in 2009 and 2010. Taishan 2 is expected to begin operation in 2019. Two units at Hinkley Point in the United Kingdom received final approval in September 2016 and are expected to be completed by 2025.
There are new EPR redesigns which will allow for simpler and faster construction.