>
Renogy Shadowflux Shading Test! Worth the Hype?!
Moment Bill Maher Makes STUNNING ADMISSION
Disaster Survival Hygiene: What to Do When the Water Stops
These Are The Worst States To Be A Gun Owner
Hydrogen Gas Blend Will Reduce Power Plant's Emissions by 75% - as it Helps Power 6 States
The Rise & Fall of Dome Houses: Buckminster Fuller's Geodesic Domes & Dymaxion
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
As the shock-absorbing cartilage discs between our vertebrae degenerate due to aging, accidents or overuse, severe back pain can result. While some scientists have developed purely synthetic replacement discs, a recent test on goats indicates that bioengineered discs may be a better way to go.
Although the replacement of degraded intervertebral discs with synthetic ones does help alleviate pain, scientists at the University of Pennsylvania claim that the implants don't match the function or range-of-motion of real cartilage, plus some of them don't last very long. That's where the researchers' bioengineered discs may make a big difference.
Still in the animal-trial phase, the discs are made by first obtaining a lab animal's mesenchymal stem cells (cells that can form into cartilage) and then adding them to a scaffolding-like matrix made up of hydrogel and polymer, which is sandwiched between two polymer endplates. The stem cells proceed to propagate into that matrix, gradually replacing it with actual cartilage. What ultimately results is a disc composed of the animal's own cartilage, which can then be surgically substituted for one of their existing discs.
Previously, an earlier miniaturized version of the disc was implanted into the spinal column of live rats' tails, and was still successfully functioning after five weeks. Those discs were officially known as disc-like angle ply structures, or DAPS.