>
Renogy Shadowflux Shading Test! Worth the Hype?!
Moment Bill Maher Makes STUNNING ADMISSION
Disaster Survival Hygiene: What to Do When the Water Stops
These Are The Worst States To Be A Gun Owner
Hydrogen Gas Blend Will Reduce Power Plant's Emissions by 75% - as it Helps Power 6 States
The Rise & Fall of Dome Houses: Buckminster Fuller's Geodesic Domes & Dymaxion
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
Scientists in Switzerland have now developed a new form of the material they say has unparalleled adhesive properties, a characteristic that could prove particularly useful in trying to repair cartilage and meniscus.
Unlike some other tissues in the human body, cartilage and meniscus have a negligible supply of blood, or none at all, and therefore won't regenerate on their own once damaged. Scientists have already looked to offer a helping hand by injecting hydrogels packed with different drugs into the damaged areas, but these tend to wash away due to the natural machinations of the human body and the flow of its fluids.
In a new study, scientists at Switzerland's École Polytechnique Fédérale de Lausanne describe a new kind of material they think can stick to the task. Their hydrogel is almost 90 percent water and includes of a web of cross-linked polyethylene glycol dimethacrylate together with cross-linked alginate, reinforced with nanofibrillated cellulose.
The resulting structure is claimed to be 10 times more adhesive than commercially available bioadhesives, and due to its high water content, bears a strong similarity to the natural tissues it is supposed to heal. But most importantly, it remains highly adhesive over time because the uniquely layered material absorbs the mechanical stresses that would otherwise wash it away.