>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

The U.S. military has been attempting to design futuristic, performance-enhancing exoskeletons for combat soldiers since the late 1990s, but the technology often interferes with the way humans move.
"The human-exoskeleton interface raises a number of potential issues. Most exoskeletons contain rigid elements that can restrict natural movement," according to a recent request for information solicitation posted on www.sibr.gov, a government website for the Small Business Innovation Research (SBIR) program, which is designed to encourage small business to engage in federal research and development.
"The objective of this effort is to demonstrate an interface that can safely join an exoskeleton (which is potentially rigid and/or heavy) to a human being (which is fleshy and load-limited) while simultaneously optimizing the mobility of and minimizing the injury to a dismounted soldier," it states.