>
The Vindication of Dr. Bhattacharya
Lessons from the 2025 European Power Grid Failure
Surprise, Surprise: Bibi Discovers "Secret Iranian Nuclear Weapons Facility" in Iran
Tetris founder's family village is collapse-proof, remote offgrid-topia
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
If a more rigorous engineering definition is used, the tensile strength of macroscale CNTBs is still 5–24 times that of any other types of engineering fiber, indicating the extraordinary advantages of ultralong Carbon nanotubes in fabricating superstrong fibers.
The work was done at Tsinghua University and other facilities in Beijing. Researchers were Yunxiang Bai, Rufan Zhang, Xuan Ye, Zhenxing Zhu, Huanhuan Xie, Boyuan Shen, Dali Cai, Bofei Liu, Chenxi Zhang, Zhao Jia, Shenli Zhang, Xide Li & Fei Wei.
A synchronous tightening and relaxing (STR) strategy further improves the alignment of the carbon nanotubes to increase the strength.
Superstrong fibers are in great demand in many high-end fields such as sports equipment, ballistic armour, aeronautics, astronautics and even space elevators. In 2005, the US National Aeronautics and Space Administration (NASA) launched a 'Strong Tether Challenge', aiming to find a tether with a specific strength up to 7.5GPa cm3 per gram for the dream of making space elevators. Unfortunately, there is still no winner for this challenge. The specific strength of existing fibres such as steel wire ropes (about 0.05–0.33 GPa cm3 per gram), carbon fibres (about 0.5–3.5GPa cm3 per gram) and polymer fibers (about 0.28–4.14GPa cm3 per gram) is far lower than 7.5GPa cm3 per gram). Carbon nanotubes, with inherent tensile strength higher than 100GPa and Young's modulus over 1TPa, are considered one of the strongest known materials.