>
Active Shooter in Tactical Gear Storms Border Patrol Station in Texas--Cops Neutralize Attacker
Benjamin Franklin and the Self-Made Man: Making America
SHOCK REPORT: DOJ, FBI Review Finds NO Jeffrey Epstein 'Client List,' Confirms Suicide - SF6
FBI Concludes Jeffrey Epstein Had No Clients, Didn't Blackmail Anyone, And Definitely Killed Him
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
They have useful and unique electronic properties which are useful for probing new physics and they might be useful for spintronics and quantum computers. Those might be far faster forms of computing.
Electrons in monolayer graphene are described by massless Dirac electrons, which exhibit unique quantum phenomena due to the pseudospin and Berry phase of the massless electron.
A tunable bandgap up to 200 meV can be induced in bilayer graphene with electrical gating.
Dirac fermions in quasicrystalline graphene
Quasicrystal lattices, which can have rotational order but lack translational symmetry, can be used to explore electronic properties of materials between crystals and disordered solids. Ahn et al. grew graphene bilayers rotated exactly 30° that have 12-fold rotational order. Electron diffraction and microscopy confirmed the formation of quasicrystals, and angle-resolved photoemission spectroscopy revealed anomalous interlayer electronic coupling that was quasi-periodic.