>
Active Shooter in Tactical Gear Storms Border Patrol Station in Texas--Cops Neutralize Attacker
Benjamin Franklin and the Self-Made Man: Making America
SHOCK REPORT: DOJ, FBI Review Finds NO Jeffrey Epstein 'Client List,' Confirms Suicide - SF6
FBI Concludes Jeffrey Epstein Had No Clients, Didn't Blackmail Anyone, And Definitely Killed Him
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
The Software-Tailored Architecture for Quantum (STAQ) co-design project aims to build a quantum computer capable of solving challenging calculations within five years. Fred Chong, the Seymour Goodman Professor of Computer Science at the University of Chicago, will receive $3 million to lead the STAQ software team, bridging the gap between new architectures developed by the project and theoretical algorithms that apply quantum computing to chemistry, physics and other domains.
The STAQ project will explore a particular quantum computing technology using trapped ions—atoms with electrons removed to give them a positive charge. Researchers then suspend these atoms in an ultra-high vacuum, and use precise lasers to manipulate their quantum states and form qubits, the quantum analogue of a traditional logical computer bit.