>
Windows 10 is DEAD in 2025? -- Here's How I Run It SAFELY Forever (No Updates)
GENIUS ACT TRIGGERED: The Biggest BANK RUN in History is COMING – Prepare NOW
European Billionaires Funneled $2 Billion into NGO Network to Fund Anti-Trump Protest Machine
Japan Confirms Over 600,000 Citizens Killed by COVID mRNA 'Vaccines'
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
Russia flies strategic cruise missile propelled by a nuclear engine
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install

An all-optical centimeter-scale laser-plasma positron accelerator is modeled to produce quasimonoenergetic beams with tunable ultrarelativistic energies. A new principle elucidated here describes the trapping of divergent positrons that are part of a laser-driven electromagnetic particle-shower with a large energy spread and their acceleration into a quasimonoenergetic positron beam in a laser-driven plasma wave. Proof of this principle using analysis and particle-in-cell simulations demonstrates that, under limits defined here, existing lasers can accelerate hundreds of MeV pC quasi-monoenergetic positron bunches. By providing an affordable alternative to kilometer-scale radio-frequency accelerators, this compact positron accelerator opens up new avenues of research.