>
Outraged Farmers Blame Ag Monopolies as Catastrophic Collapse Looms
Exposing the Cover-Up That Could Collapse Big Medicine: Parasites
Israel's Former Space Security Chief says Aliens exist, and President Trump knows about it
Putin's advisor Kobyakov: The U.S. has devised a crypto scheme to erase its massive debt...
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Perched loftily on Germany's Baltic coast, the small-to-middling town of Greifswald continues to be at the forefront of research into nuclear fusion. This is in no small part down to the presence of the Wendelstein 7-X – a fusion reactor so complicated they literally needed a supercomputer to design it. The latest tidings from the Max Planck Institute for Plasma Physics, creators of the Wendelstein 7-X, are that a new record has been set for the so-called fusion product. This is a theoretical performance benchmark rather than physical matter, but all the same, it's another significant step along the path to practical fusion power.
The fusion product is a measure which indicates how close a reactor is to plasma ignition – the critical point at which nuclear fusion becomes self-sustaining, and which happens naturally in stars like our Sun at a mere 15 million degrees Celsius (or 27 million degrees Fahrenheit, if that helps you compare things to a balmy summer's day.) The product is the result of multiplying ion temperature and density, then dividing by time and hence measured in degree-seconds per cubic meter. This latest hoopla is all because Wendelstein 7-X has achieved 10 to the 26th power of those, which is really rather a lot, apparently.
"This is an excellent value for a device of this size, achieved, moreover, under realistic conditions, i.e. at a high temperature of the plasma ions," Professor Sunn Pedersen says in a press release.