>
Empowered Learning: How Homeschooling Through High School Helped Me Thrive
Banks That Own Crypto: Navigating the New Frontier of Digital Assets
Aerial footage shows scale of 'unite the kingdom' rally
This "Printed" House Is Stronger Than You Think
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Without this system it is not possible to determine a spaceship's location precisely enough to engine-firing just right to go into orbit around a distant moon.
With this technology, autonomous spacecraft could thread a needle to get into orbit around the moon of a distant planet instead of doing a flyby according to NASA scientist Zaven Arzoumanian. A galactic positioning system could also provide "a fallback, so that if a crewed mission loses contact with the Earth, they'd still have navigation systems on board that are autonomous."
When your phone tries to determine its position in space, it listens with its radio to the precise ticking of clock signals coming from a fleet of GPS (global positioning) satellites in Earth orbit. The phone's GPS then uses the differences between those ticks to figure out its distance from each satellite, and uses that information to triangulate its own location in space.
Your phone's GPS works fast, but Arzoumian said the galactic positioning system would work slower —taking the time needed to traverse long stretches of deep space. It would be a small, swivel-mounted X-ray telescope, which would look a lot like the big, bulky NICER stripped down to its barest minimum components.