>
The Pentagon Failed Its Audit Again. You Should Be Alarmed.
Cuban Crisis 2.0. What if 'Gerans' flew from Cuba?
Senate Democrats Offer Promising Ideas for Changing Immigration Enforcement
Never Seen Risk Like This Before in My Career
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries
Lab–grown LIFE takes a major step forward – as scientists use AI to create a virus never seen be
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Donut Lab Says It Cracked Solid-State Batteries. Experts Have Questions.

Nextbigfuture has been constantly tracking nuclear fusion and advanced nuclear fission every week for the past 13 years.
The popular question is when will we have commercial nuclear fusion that has a significant impact on the energy production of the world?
MIT has spunout a tokomak fusion project into Commonwealth Fusion systems. They want to apply modular designs to high-temperature superconductors. They want to get to stronger magnets that will shrink the size and cost of the potential nuclear fusion reactor. Improved magnets would improve any nuclear fusion design that involves confinement of plasma. There is less science risk to this MIT approach but more technological risk. They are trying to accelerate the commercial use of high-temperature superconducting magnets and trying to contain their costs. Cost for superconducting magnets for past fusion projects have been $20 per watt but other applications have seen costs of $1.4 to $1.8 per watt.