>
Lumber Prices Are Flashing a Warning Sign for the U.S. Economy
The Cost Of Living The American Dream For A Lifetime Has Reached A Whopping 5 Million Dollars
Reverse Erectile Dysfunction FAST (Without Viagra)
Who's Buying Up America's Farmland? The Land Grab You Need to Know About
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Researchers at Rice University and the Indian Institute of Science have now isolated a 2D form of the soft metal gallium, dubbed "gallenene," which could make for efficient, thin metal contacts in electronic devices.
Reducing a regular 3D material into two dimensions can fundamentally change its electric, magnetic, physical or chemical properties. Putting aside the attention-grabbing graphene, in recent years scientists have created 2D versions of materials like black phosphorus, molybdenum disulfide, and chromium triiordide, which is so far the only material capable of retaining magnetism in two dimensions.
In its familiar 3D state, gallium has a low melting point of just below 30° C (86° F). That makes it a great candidate for applications that need liquid metals at roughly room temperature, and we've seen gold-gallium and indium-gallium alloys put to work in "metal glue," flexible electronic circuits, fluidic transistors and cancer-hunting "Nano-Terminators."