>
Meet The Heroes That Gave Their Own Lives To Save Others During The Texas Flood
Scientists Reverse Parkinson's Symptoms in Mice: 'We were astonished by the success'
America Is A Great Nation And A Work-In-Progress | Something To Stand For #60 | The Way I Heard It
Centuries of hidden evidence: Vaccines' neurological toll revealed
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
Mattershift designs and manufactures nanotube membranes for carbon-zero fuels, health and performance optimized air and water, and precision medicine. The startup was founded in 2013 to realize the potential of molecular factories, with the ultimate goal of printing matter from the air.
Science Advances – Large-scale polymeric carbon nanotube membranes with sub–1.27-nm pores Abstract
Mattershift reports the first characterization study of commercial prototype carbon nanotube (CNT) membranes consisting of sub–1.27-nm-diameter CNTs traversing a large-area nonporous polysulfone film. The membranes show rejection of NaCl and MgSO4 at higher ionic strengths than have previously been reported in CNT membranes, and specific size selectivity for analytes with diameters below 1.24 nm. The CNTs used in the membranes were arc discharge nanotubes with inner diameters of 0.67 to 1.27 nm. Water flow through the membranes was 1000 times higher than predicted by Hagen-Poiseuille flow, in agreement with previous CNT membrane studies. Ideal gas selectivity was found to deviate significantly from that predicted by both viscous