>
Empowered Learning: How Homeschooling Through High School Helped Me Thrive
Banks That Own Crypto: Navigating the New Frontier of Digital Assets
Aerial footage shows scale of 'unite the kingdom' rally
This "Printed" House Is Stronger Than You Think
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
There are examples of speech sample recordings and synthesized speech based on different numbers of samples. The synthesized speech had some noise distortion but the samples did sound like the original speakers.
Baidu attempted to learn speaker characteristics from only a few utterances (i.e., sentences of few seconds duration). This problem is commonly known as "voice cloning." Voice cloning is expected to have significant applications in the direction of personalization in human-machine interfaces.
They tried two fundamental approaches for solving the problems with voice cloning: speaker adaptation and speaker encoding.
Speaker adaptation is based on fine-tuning a multi-speaker generative model with a few cloning samples, by using backpropagation-based optimization. Adaptation can be applied to the whole model, or only the low-dimensional speaker embeddings. The latter enables a much lower number of parameters to represent each speaker, albeit it yields a longer cloning time and lower audio quality.