>
The Blame Game Tariff Trump & Too Late Powell
Here's how to eat after taking antibiotics, according to science
Sour fruit heralded as treatment for gout, insomnia, sore muscles and more
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
That scenario is now one step closer, as engineers from NASA and the University of Michigan have successfully tested the X3, a thruster designed to get us to Mars. And it's broken several records in the process.
The X3 is one of three Mars engine prototypes currently in development. It is what's known as a Hall thruster, which uses electric and magnetic fields to ionize gases like xenon and expels the ions to produce thrust. The technique is much cleaner, safer and more fuel efficient than traditional chemical rockets, but the trade off is relatively low thrust and acceleration.
"Mars missions are just on the horizon, and we already know that Hall thrusters work well in space," says Alec Gallimore, lead engineer on the X3's development. "They can be optimized either for carrying equipment with minimal energy and propellant over the course of a year or so, or for speed — carrying the crew to Mars much more quickly."