>
Bitcoin Circular Economies and a Bridge Between Las Vegas and Peru
'Right of Return' for Israeli Child Predators Fleeing U.S.
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
That scenario is now one step closer, as engineers from NASA and the University of Michigan have successfully tested the X3, a thruster designed to get us to Mars. And it's broken several records in the process.
The X3 is one of three Mars engine prototypes currently in development. It is what's known as a Hall thruster, which uses electric and magnetic fields to ionize gases like xenon and expels the ions to produce thrust. The technique is much cleaner, safer and more fuel efficient than traditional chemical rockets, but the trade off is relatively low thrust and acceleration.
"Mars missions are just on the horizon, and we already know that Hall thrusters work well in space," says Alec Gallimore, lead engineer on the X3's development. "They can be optimized either for carrying equipment with minimal energy and propellant over the course of a year or so, or for speed — carrying the crew to Mars much more quickly."