>
Staying hydrated: Why ELECTROLYTES matter in summer and how to get them
INVASION of the TOXIC FOOD DYES:
BrightLearn - Revolutionizing the Internet with Qortal, an interview with Jason Crowe
"Plummeted 97.5%!" - Jaguar Sales TANK As Customers Reject CONTROVERSIAL Pride Agenda
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
An organic solar cell testing inside the Randall Lab. University of Michigan researchers have found a way to coax electrons to travel much further than was previously thought possible in the materials often used for organic solar cells and other organic semiconductors. Image credit: Robert Coelius, Michigan Engineering
Unlike the inorganic solar cells widely used today, organics can be made of inexpensive, flexible carbon-based materials like plastic. Manufacturers could churn out rolls of them in a variety of colors and configurations, to be laminated unobtrusively into almost any surface.