>
Staying hydrated: Why ELECTROLYTES matter in summer and how to get them
INVASION of the TOXIC FOOD DYES:
BrightLearn - Revolutionizing the Internet with Qortal, an interview with Jason Crowe
"Plummeted 97.5%!" - Jaguar Sales TANK As Customers Reject CONTROVERSIAL Pride Agenda
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Optical emission was up to 10 million photons per second, about 100 times more intense than the emission measured for previous single-molecular optoelectronic devices.
The energy shift of the main peak changes as a function of the voltage, which provides a way to tune the color of the light.
The researchers will investigate the impact of defects and GNR aspect ratio (width) on emission. They want to integrate graphene nanoribbons devices into larger circuitry to create bright, robust, and controllable graphene-based light-emitting devices.
Abstract
Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit.