>
Tuesday War Room LIVE: Trump Set to Shatter Deportation Record by End of First Year…
Parallel Polis Reborn: Freeing the Market through Decentralized Technologies
Amazon goes nuclear with new modular reactor plant
The alarming reality EXPOSED by the global internet meltdown... and why Amazon's crash...
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
Now University of Rochester researchers have succeeded in creating particles with negative mass in an atomically thin semiconductor, by causing it to interact with confined light in an optical microcavity.
Above – In this optical microcavity, created by the lab of Nick Vamivakas, confined light interacts with an atomically thin semiconductor to create particles with negative mass. The device also presents "a way to generate laser light with an incrementally small amount of power," says Vamivakas, an associate professor of quantum optics and quantum physics at Rochester's Institute of Optics. (Illustration by Michael Osadciw/University of Rochester)
This alone is "interesting and exciting from a physics perspective," says Nick Vamivakas, an associate professor of quantum optics and quantum physics at Rochester's Institute of Optics. "But it also turns out the device we've created presents a way to generate laser light with an incrementally small amount of power."