>
Lumber Prices Are Flashing a Warning Sign for the U.S. Economy
The Cost Of Living The American Dream For A Lifetime Has Reached A Whopping 5 Million Dollars
Reverse Erectile Dysfunction FAST (Without Viagra)
Who's Buying Up America's Farmland? The Land Grab You Need to Know About
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
The study, by scientists at AgeX and BioTime, in collaboration with Insilico Medicine, utilized artificial intelligence (AI) technology to parse millions of gene expression data points to decipher the complex mechanisms controlling natural tissue regeneration. The results, published in the peer-reviewed scientific journal Oncotarget, showed that the candidate genes are expressed differently in tissues early in development when they are capable of regeneration compared to later in life when regeneration can no longer take place. Surprisingly, some of the genes, including one highlighted in the study, COX7A1, displayed a rare profile of being nearly universally dysregulated in diverse types of cancer. The discoveries may lead to novel strategies to induce Tissue Regeneration (iTRTM) in the context of trauma or age-related degenerative disease, as well as treat and diagnose cancer.