>
Audio + English transcript from the closed-door July 9, 2025 court hearing in the case against...
Trump: Obama started this WHOLE thing! (6 mins on it from the Maria B interview)
Provoked: How Washington Started the New Cold War with Russia and the Catastrophe in Ukraine
US Politics Is Just Nonstop Fake Revolutions Now
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
The device could help bring about "quantum communications" networks, which would use individual particles of light to send bits of information. Because each bit of information can be embedded in the quantum properties of a single photon, the laws of quantum mechanics make it difficult, if not impossible, for an enemy to intercept the message undetected.
Both the telecommunications and computer industries would like such networks to keep information secure. The NIST method may help overcome one of the technical barriers standing in their way by measuring photons' spectral properties—essentially their color—10,000 times better than conventional spectrometers.
Individual photons have a limitation: They cannot travel through fiber-optic cables for more than about 100 kilometers (about 60 miles) without likely being absorbed. A quantum network able to handle worldwide communications would need periodic way stations that could catch photons and retransmit their information without loss. The NIST team's invention could help such a "quantum repeater" interact effectively with photons.