>
The Vindication of Dr. Bhattacharya
Lessons from the 2025 European Power Grid Failure
Surprise, Surprise: Bibi Discovers "Secret Iranian Nuclear Weapons Facility" in Iran
Tetris founder's family village is collapse-proof, remote offgrid-topia
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
Much of the enthusiasm around gene-editing techniques, particularly the CRISPR-Cas9 technology, centers on the ability to insert or remove genes or to repair disease-causing mutations. A major concern of the CRISPR-Cas9 approach, in which the double-stranded DNA molecule is cut, is how the cell responds to that cut and how it is repaired. With some frequency, this technique leaves new mutations in its wake with uncertain side effects.
In a paper appearing in the journal Cell on December 7, scientists at the Salk Institute report a modified CRISPR-Cas9 technique that alters the activity, rather than the underlying sequence, of disease-associated genes. The researchers demonstrate that this technique can be used in mice to treat several different diseases.
"Cutting DNA opens the door to introducing new mutations," says senior author Juan Carlos Izpisua Belmonte of the Salk Institute for Biological Studies whose laboratory developed the new technique. "That is something that is going to stay with us with CRISPR or any other tool we develop that cuts DNA. It is a major bottleneck in the field of genetics -- the possibility that the cell, after the DNA is cut, may introduce harmful mistakes."