>
Trump pardons Mets legend, 'Celebrity Apprentice' alum Darryl Strawberry over tax evasion co
You WON'T BELIEVE How Much Money We're REALLY Sending To Israel!
China CANCELS U.S. Soybean Order?! Joel Salatin
Ep 38 Jonathan Haidt: on The Anxious Generation: Childhood in Social Media Age & Fragile College ...
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028

(Natural News) Scientists developed a new idea for invisibility technology that would allow light waves to pass straight through a special material without any obstruction, as reported by Science Daily.
Researchers from University of Technology (TU Wien) in Vienna, together with colleagues from Greece and the United States, discovered a new idea for cloaking technology in which a completely opaque material is irradiated from above with a specific wave pattern — with the effect that light waves from the left can now pass through the material.
The discovery can be applied to different kinds of waves and it should work with sound waves just as well as with light waves.
"Complex materials such as a sugar cube are opaque, because light waves inside them are scattered multiple times," explained Stefan Rotter, a TU Wein professor. "A light wave can enter and exit the object, but will never pass through the medium on a straight line. Instead, it is scattered into all possible directions," he said.
The researchers at TU Wien did not want to reroute the light waves, nor did they want to restore them with additional displays.
"Our goal was to guide the original light wave through the object, as if the object was not there at all. This sounds strange, but with certain materials and using our special wave technology, it is indeed possible," said Andre Brandstötter, one of the authors of the study.
The material that the researchers are working on are optically active materials, which are used for building lasers. This means that when it is energized, it will shine. Otherwise, the laser material behaves just like any other material — it absorbs part of the incident light. Controlling how it shines can allow incidental light to pass right through it.
"The crucial point is to pump energy into the material in a spatially tailored way such that light is amplified in exactly the right places, while allowing for absorption at other parts of the material," said Konstantinos Makris, a professor from the University of Crete.
Makris further explained that in order to achieve the process, a beam with exactly the right pattern has to be projected onto the material from above, similar to a standard video projector, but with a much higher resolution.
If the pattern corresponded correctly to the inner irregularities of the material which usually scatter the light, then the projection from above can effectively switch off the scattering. In addition, another beam of light traveling through the material from one side can pass without any obstruction, scattering, or loss.
"Mathematically, it is not immediately obvious that it is at all possible to find such a pattern," said Rotter.
"Every object we want to make transparent has to be irradiated with its own specific pattern — depending on the microscopic details of the scattering process inside. The method we developed now allows us to calculate the right pattern for any arbitrary scattering medium," he added.