>
Stop Working So Hard in Your Garden (These Hacks Make Gardening WAY Easier!)
The Federal Government's 175,000 Pages of Regulations Turn the Rule of Law Into a Cruel Joke
Design flaws undercut law to bring chip manufacturing back to US, expert says
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
Intel researchers and parters developed supervised convolutional architectures for discriminating signals in high-energy physics data as well as semi-supervised architectures for localizing and
classifying extreme weather in climate data. Our Intelcaffe based implementation obtains ∼2TFLOP/s on a single Cori Phase-II Xeon-Phi node. We use a hybrid strategy employing synchronous node-groups, while using asynchronous communication across groups. They use this strategy to scale training of a single model to ∼9600 Xeon-Phi nodes; obtaining peak performance of 11.73-15.07 PFLOP/s and sustained performance of 11.41-13.27 PFLOP/s. At scale, their HEP architecture produces state-of-the-art classification accuracy on a dataset with 10 Million images, exceeding
that achieved by selections on high-level physics-motivated features. Their semi-supervised architecture successfully extracts weather patterns in a 15TB climate dataset. Their results demonstrate that Deep Learning can be optimized and scaled effectively on many-core, HPC systems.