>
Outraged Farmers Blame Ag Monopolies as Catastrophic Collapse Looms
Exposing the Cover-Up That Could Collapse Big Medicine: Parasites
Israel's Former Space Security Chief says Aliens exist, and President Trump knows about it
Putin's advisor Kobyakov: The U.S. has devised a crypto scheme to erase its massive debt...
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
The approach could revolutionize regenerative medicine, enabling the production of complex tissues and cartilage that would potentially support, repair or augment diseased and damaged areas of the body.
While bioprinting has advanced significantly over the last 15 years, the pursuit of morphological complexity and biological functionality in fabricated cellular constructs remains challenging. Criteria relating to the printing process, including cytocompatibility, the resolution of cell placement and structural complexity, and the maturation of biologically active tissues, must all be addressed if printed tissues are to play a major role in regenerative medicine. To date, no single fabrication approach has addressed the gamut of design challenge for synthetic cellularized structures, however progress has been made by appropriating a range of 3D printing methodologies, including extrusion, laser-induced forward transfer, and droplet-based ejection.