>
Trump pardons Mets legend, 'Celebrity Apprentice' alum Darryl Strawberry over tax evasion co
You WON'T BELIEVE How Much Money We're REALLY Sending To Israel!
China CANCELS U.S. Soybean Order?! Joel Salatin
Ep 38 Jonathan Haidt: on The Anxious Generation: Childhood in Social Media Age & Fragile College ...
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028

The apparent key to solve the problem of uber-fast charging is to use a highly conductive, two-dimensional material called MXene. The team has demonstrated charging of thin MXene electrodes in tens of milliseconds.
At the same time, MXene will allow the storage of much more energy than conventional supercapacitors, (although the presser is silent about how much more). So for now it's open question whether MXene has the potential to beat well known lithium–titanate chemistry.
For now we will keep it in the theoretical category for EV commercialization.
There could be plenty of applications for recharging in minutes (at least at an affordable price), but we are not sure whether we can sacrifice any range in a electric vehicle application to solve the high-power requirement for that kind of charging (5 minutes recharge of 50 kWh pack needs 600 kW of power).