>
The Roger Ver Lawfare Case You've Never Heard of and Why Trump Needs to End It
Deportations Have Only Just Begun! Border Czar Homan 'Building Teams' To Ramp Up Operations.
VIDEO: Kevin O' Leary and Alex Jones Go Off on the 'War on Small Business' Slipped Withi
First Ever: USDOJ Files Terrorism Charges Against Sinaloa Cartel Members
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
NASA has focused on the use of KiloPower for potential Mars human exploration. NASA has examined the need for power on Mars and determined that approximately 40 kilowatts would be needed. Five 10-kilowatt KiloPower reactors (four main reactors plus one spare) could solve this power requirement.
During steady state, a reactor operates with a neutron multiplication factor of '1.000'; that is, the number of neutrons in the core remains unchanged from one generation to the next generation.
Almost every perturbation in a reactor's operation ultimately translates into either a positive or a negative reactivity insertion incident, defined as the state in which the core neutron multiplication factor deviates from its steady state value. Sudden and significant positive reactivity insertion can lead to runaway reactor kinetics, wherein temperatures can exceed thermal limits very rapidly.