>
America Growing at Odds with Itself: Something's Not Being Said
Outraged Farmers Blame Ag Monopolies as Catastrophic Collapse Looms
Exposing the Cover-Up That Could Collapse Big Medicine: Parasites
Israel's Former Space Security Chief says Aliens exist, and President Trump knows about it
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
NASA has focused on the use of KiloPower for potential Mars human exploration. NASA has examined the need for power on Mars and determined that approximately 40 kilowatts would be needed. Five 10-kilowatt KiloPower reactors (four main reactors plus one spare) could solve this power requirement.
During steady state, a reactor operates with a neutron multiplication factor of '1.000'; that is, the number of neutrons in the core remains unchanged from one generation to the next generation.
Almost every perturbation in a reactor's operation ultimately translates into either a positive or a negative reactivity insertion incident, defined as the state in which the core neutron multiplication factor deviates from its steady state value. Sudden and significant positive reactivity insertion can lead to runaway reactor kinetics, wherein temperatures can exceed thermal limits very rapidly.