>
Active Shooter in Tactical Gear Storms Border Patrol Station in Texas--Cops Neutralize Attacker
Benjamin Franklin and the Self-Made Man: Making America
SHOCK REPORT: DOJ, FBI Review Finds NO Jeffrey Epstein 'Client List,' Confirms Suicide - SF6
FBI Concludes Jeffrey Epstein Had No Clients, Didn't Blackmail Anyone, And Definitely Killed Him
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
John Martinis, one of Google's quantum computing gurus, laid out Google's "stretch goal": to build and test a 49-qubit ("quantum bit") quantum computer by the end of 2017. This computer will use qubits made of superconducting circuits. Each qubit is prepared in a precise quantum state based on a two-state system. The test will be a milestone in quantum computer technology. In a subsequent presentation, Sergio Boixo, Martinis' colleague at Google, said that a quantum computer with approximately 50 qubits will be capable of certain tasks beyond anything the fastest classical computers can do.
Researchers say that quantum computers promise an exponential increase in speed for a subset of computational chores like prime number factorization or exact simulations of organic molecules. This is because of entanglement: If you prepare entangled qubits, you will be able to manipulate multiple states simultaneously.
New Scientist reports that Google is testing a 20 qubit quantum computer. Alan Ho, an engineer in Google's quantum AI lab, revealed the company's progress at a quantum computing conference in Munich, Germany. His team is currently working with a 20-qubit system that has a "two-qubit fidelity" of 99.5 per cent – a measure of how error-prone the processor is, with a higher rating equating to fewer errors.