>
12 Important Questions That All Americans Should Be Asking About The Shameful Attempt To Cover...
Dr. Linda Ojeda's "Menopause Without Medicine" advocates for a positive, empowered app
BREAKING: AFTER 20 YEARS, TSA QUIETLY ENDS SHOE REMOVAL RULE: EFFECTIVE IMMEDIATELY
Chris Hedges: Profiting From Genocide
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
While AI systems can match many human capabilities, they take 10 times longer to learn. Now, by copying the way the brain works, Google DeepMind has built a machine that is closing the gap.
Intelligent machines have humans in their sights. Deep-learning machines already have superhuman skills when it comes to tasks such as face recognition, video-game playing, and even the ancient Chinese game of Go. So it's easy to think that humans are already outgunned.
But not so fast. Intelligent machines still lag behind humans in one crucial area of performance: the speed at which they learn. When it comes to mastering classic video games, for example, the best deep-learning machines take some 200 hours of play to reach the same skill levels that humans achieve in just two hours.
So computer scientists would dearly love to have some way to speed up the rate at which machines learn.